Онтология — различия между версиями

Материал из ВикиПротопии
Перейти к: навигация, поиск
Строка 7: Строка 7:
 
В общем виде структура онтологии представляет собой набор элементов четырех категорий:
 
В общем виде структура онтологии представляет собой набор элементов четырех категорий:
  
    классы (или понятия ) ;
+
*классы (или понятия ) ;
    отношения (или свойства. атрибуты) ;
+
*отношения (или свойства. атрибуты) ;
    функции ;
+
*аксиомы;
    аксиомы;
+
*экземпляры.
    экземпляры. [1]
+
*функции ;
 +
 
 +
===понятия===
  
 
Классы или понятия используются в широком смысле. Понятием может быть любая сущность, о которой может быть дана какая-либо информация. Классы — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Классы в онтологиях обычно организованы в таксономию — иерархическую классификацию понятий по отношению включения. Например, классы Мужчина и Женщина являются подклассами класса Человек, который в свою очередь включен в класс Млекопитающие.
 
Классы или понятия используются в широком смысле. Понятием может быть любая сущность, о которой может быть дана какая-либо информация. Классы — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Классы в онтологиях обычно организованы в таксономию — иерархическую классификацию понятий по отношению включения. Например, классы Мужчина и Женщина являются подклассами класса Человек, который в свою очередь включен в класс Млекопитающие.
 +
 +
===Отношения===
  
 
Отношения представляют тип взаимодействия между понятиями предметной области. Формально n-арные отношения определяются как подмно жество произведения n множеств . Пример бинарного отношения — отношение ЧАСТЬ-ЦЕЛОЕ. Отношения тоже могут быть организованы в таксономию по включению; например, отношения быть_отцом_для и быть_матерью_для на множестве людей содержатся в отношении быть_родителем_для, которое в свою очередь содержится в отношении быть_предком_для.
 
Отношения представляют тип взаимодействия между понятиями предметной области. Формально n-арные отношения определяются как подмно жество произведения n множеств . Пример бинарного отношения — отношение ЧАСТЬ-ЦЕЛОЕ. Отношения тоже могут быть организованы в таксономию по включению; например, отношения быть_отцом_для и быть_матерью_для на множестве людей содержатся в отношении быть_родителем_для, которое в свою очередь содержится в отношении быть_предком_для.
 +
 +
===Функции===
  
 
Функции — это специальный случай отношений, в которых n-й элемент отношения однозначно определяется n-1 предшествующими элементами. Формально функции определяются следующим образом: F: C1 × C2 × … × Cn-1 —> Cn. Примерами функциональных отношений являются отношения быть_матерью_для на множестве людей, или цена_подержанного_автомобиля, которая вычисляется в зависимости от модели автомобиля, даты изготовления и пробега.
 
Функции — это специальный случай отношений, в которых n-й элемент отношения однозначно определяется n-1 предшествующими элементами. Формально функции определяются следующим образом: F: C1 × C2 × … × Cn-1 —> Cn. Примерами функциональных отношений являются отношения быть_матерью_для на множестве людей, или цена_подержанного_автомобиля, которая вычисляется в зависимости от модели автомобиля, даты изготовления и пробега.
 +
 +
===Аксиомы===
  
 
Аксиомы используются, чтобы записать высказывания, которые всегда истинны. Они могут быть включены в онтологию для разных целей, например, для определения комплексных ограничений на значения атрибутов, аргументы отношений, для проверки корректности информации, описанной в онтологии, или для вывода новой информации. Аксиомы задают условия соотнесения категорий и отношений, они выражают очевидные утверждения, связывающие понятия и отношения. Под аксиомой можно понимать утверждение, вводимое в онтологию в готовом виде, из которого могут быть выведены другие утверждения. Они позволяют выразить ту информацию, которая не может быть отражена в онтологии посредством построения иерархии понятий и установки различных отношений между понятиями. В качестве примера аксиомы можно привести следующее высказывание: « Если X смертен, то X когда-нибудь умрет». Аксиомы позволяют в дальнейшем осуществлять умозаключения в рамках онтологии. Они могут снабжать исследователей информацией о правилах, позволяющих автоматически добавлять информацию. Аксиомы могут также представлять собой ограничения, накладываемые на какие-либо отношения, делающие возможным выведение умозаключений. Примером числовых ограничений является утверждение того, что для Человека количество биологических родителей равно 2. Количество и степень детализации аксиом обычно зависят от типа онтологии.
 
Аксиомы используются, чтобы записать высказывания, которые всегда истинны. Они могут быть включены в онтологию для разных целей, например, для определения комплексных ограничений на значения атрибутов, аргументы отношений, для проверки корректности информации, описанной в онтологии, или для вывода новой информации. Аксиомы задают условия соотнесения категорий и отношений, они выражают очевидные утверждения, связывающие понятия и отношения. Под аксиомой можно понимать утверждение, вводимое в онтологию в готовом виде, из которого могут быть выведены другие утверждения. Они позволяют выразить ту информацию, которая не может быть отражена в онтологии посредством построения иерархии понятий и установки различных отношений между понятиями. В качестве примера аксиомы можно привести следующее высказывание: « Если X смертен, то X когда-нибудь умрет». Аксиомы позволяют в дальнейшем осуществлять умозаключения в рамках онтологии. Они могут снабжать исследователей информацией о правилах, позволяющих автоматически добавлять информацию. Аксиомы могут также представлять собой ограничения, накладываемые на какие-либо отношения, делающие возможным выведение умозаключений. Примером числовых ограничений является утверждение того, что для Человека количество биологических родителей равно 2. Количество и степень детализации аксиом обычно зависят от типа онтологии.
 +
 +
===Экземпляры===
  
 
Экземпляры в литературе могут выступать также под названиями:
 
Экземпляры в литературе могут выступать также под названиями:
  
    конкретные экземпляры;
+
*конкретные экземпляры;
    инстанции;
+
*инстанции;
    индивидуальные экземпляры.  
+
*индивидуальные экземпляры.  
  
 
Экземпляры - это отдельные представители класса сущностей или явлений, то есть конкретные элементы какой-либо категории (например, экземпляром класса Человек будет королева Виктория). Составляющие онтологии подчиняются своеобразной иерархии. На нижнем уровне этой иерархической лестницы находятся экземпляры, конкретные индивиды , выше идут понятия, то есть категории. На уровень выше располагаются отношения между этими понятиями, а обобщающей и связующей является ступень правил или аксиом. [2]  
 
Экземпляры - это отдельные представители класса сущностей или явлений, то есть конкретные элементы какой-либо категории (например, экземпляром класса Человек будет королева Виктория). Составляющие онтологии подчиняются своеобразной иерархии. На нижнем уровне этой иерархической лестницы находятся экземпляры, конкретные индивиды , выше идут понятия, то есть категории. На уровень выше располагаются отношения между этими понятиями, а обобщающей и связующей является ступень правил или аксиом. [2]  
  
 
==источники информации==
 
==источники информации==
#И.С. Константинова, О.А. Митрофанова. ОНТОЛОГИИ КАК СИСТЕМЫ ХРАНЕНИЯ ЗНАНИЙ. Санкт-Петербургский государственный университет. Факультет филологии и искусств, Кафедра математической лингвистики
+
#И.С. Константинова, О.А. Митрофанова. ОНТОЛОГИИ КАК СИСТЕМЫ ХРАНЕНИЯ ЗНАНИЙ. Санкт-Петербургский государственный университет. Факультет филологии и искусств, Кафедра математической лингвистики. http://www.ict.edu.ru/ft/005706/68352e2-st08.pdf
 
#Онтологии и тезаурусы: модели, инструменты, приложения. Авторы: Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. Учебный курс
 
#Онтологии и тезаурусы: модели, инструменты, приложения. Авторы: Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. Учебный курс
 
   
 
   

Версия 23:00, 1 апреля 2018




Онтология
Список понятий см. в Глоссарий


Онтология - формальное представление знаний. Онтологии определяют понятия (концепции), относящиеся к какой-то области, а также задают отношения между этими терминами. Онтологии используются в таких областях информатики, как представление знаний, медицинская и биоинформатика, а также семантическая паутина (semantic web). Современные онтологии могут содержать десятки и сотни тысяч определений, поэтому они часто имеют формат, удобный для чтения компьютером, и имеют строгую логическую базу.

Структура онтологии

В общем виде структура онтологии представляет собой набор элементов четырех категорий:

  • классы (или понятия ) ;
  • отношения (или свойства. атрибуты) ;
  • аксиомы;
  • экземпляры.
  • функции ;

понятия

Классы или понятия используются в широком смысле. Понятием может быть любая сущность, о которой может быть дана какая-либо информация. Классы — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Классы в онтологиях обычно организованы в таксономию — иерархическую классификацию понятий по отношению включения. Например, классы Мужчина и Женщина являются подклассами класса Человек, который в свою очередь включен в класс Млекопитающие.

Отношения

Отношения представляют тип взаимодействия между понятиями предметной области. Формально n-арные отношения определяются как подмно жество произведения n множеств . Пример бинарного отношения — отношение ЧАСТЬ-ЦЕЛОЕ. Отношения тоже могут быть организованы в таксономию по включению; например, отношения быть_отцом_для и быть_матерью_для на множестве людей содержатся в отношении быть_родителем_для, которое в свою очередь содержится в отношении быть_предком_для.

Функции

Функции — это специальный случай отношений, в которых n-й элемент отношения однозначно определяется n-1 предшествующими элементами. Формально функции определяются следующим образом: F: C1 × C2 × … × Cn-1 —> Cn. Примерами функциональных отношений являются отношения быть_матерью_для на множестве людей, или цена_подержанного_автомобиля, которая вычисляется в зависимости от модели автомобиля, даты изготовления и пробега.

Аксиомы

Аксиомы используются, чтобы записать высказывания, которые всегда истинны. Они могут быть включены в онтологию для разных целей, например, для определения комплексных ограничений на значения атрибутов, аргументы отношений, для проверки корректности информации, описанной в онтологии, или для вывода новой информации. Аксиомы задают условия соотнесения категорий и отношений, они выражают очевидные утверждения, связывающие понятия и отношения. Под аксиомой можно понимать утверждение, вводимое в онтологию в готовом виде, из которого могут быть выведены другие утверждения. Они позволяют выразить ту информацию, которая не может быть отражена в онтологии посредством построения иерархии понятий и установки различных отношений между понятиями. В качестве примера аксиомы можно привести следующее высказывание: « Если X смертен, то X когда-нибудь умрет». Аксиомы позволяют в дальнейшем осуществлять умозаключения в рамках онтологии. Они могут снабжать исследователей информацией о правилах, позволяющих автоматически добавлять информацию. Аксиомы могут также представлять собой ограничения, накладываемые на какие-либо отношения, делающие возможным выведение умозаключений. Примером числовых ограничений является утверждение того, что для Человека количество биологических родителей равно 2. Количество и степень детализации аксиом обычно зависят от типа онтологии.

Экземпляры

Экземпляры в литературе могут выступать также под названиями:

  • конкретные экземпляры;
  • инстанции;
  • индивидуальные экземпляры.

Экземпляры - это отдельные представители класса сущностей или явлений, то есть конкретные элементы какой-либо категории (например, экземпляром класса Человек будет королева Виктория). Составляющие онтологии подчиняются своеобразной иерархии. На нижнем уровне этой иерархической лестницы находятся экземпляры, конкретные индивиды , выше идут понятия, то есть категории. На уровень выше располагаются отношения между этими понятиями, а обобщающей и связующей является ступень правил или аксиом. [2]

источники информации

  1. И.С. Константинова, О.А. Митрофанова. ОНТОЛОГИИ КАК СИСТЕМЫ ХРАНЕНИЯ ЗНАНИЙ. Санкт-Петербургский государственный университет. Факультет филологии и искусств, Кафедра математической лингвистики. http://www.ict.edu.ru/ft/005706/68352e2-st08.pdf
  2. Онтологии и тезаурусы: модели, инструменты, приложения. Авторы: Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. Учебный курс