Онтология — различия между версиями
Строка 2: | Строка 2: | ||
Онтология - формальное представление [[знание|знаний]]. Онтологии определяют понятия (концепции), относящиеся к какой-то области, а также задают отношения между этими терминами. Онтологии используются в таких областях информатики, как представление знаний, медицинская и биоинформатика, а также семантическая паутина (semantic web). Современные онтологии могут содержать десятки и сотни тысяч определений, поэтому они часто имеют формат, удобный для чтения компьютером, и имеют строгую логическую базу. | Онтология - формальное представление [[знание|знаний]]. Онтологии определяют понятия (концепции), относящиеся к какой-то области, а также задают отношения между этими терминами. Онтологии используются в таких областях информатики, как представление знаний, медицинская и биоинформатика, а также семантическая паутина (semantic web). Современные онтологии могут содержать десятки и сотни тысяч определений, поэтому они часто имеют формат, удобный для чтения компьютером, и имеют строгую логическую базу. | ||
+ | |||
+ | ==Структура онтологии== | ||
+ | |||
+ | В общем виде структура онтологии представляет собой набор элементов четырех категорий: | ||
+ | |||
+ | классы (или понятия ) ; | ||
+ | отношения (или свойства. атрибуты) ; | ||
+ | функции ; | ||
+ | аксиомы; | ||
+ | экземпляры. [1] | ||
+ | |||
+ | Классы или понятия используются в широком смысле. Понятием может быть любая сущность, о которой может быть дана какая-либо информация. Классы — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Классы в онтологиях обычно организованы в таксономию — иерархическую классификацию понятий по отношению включения. Например, классы Мужчина и Женщина являются подклассами класса Человек, который в свою очередь включен в класс Млекопитающие. | ||
+ | |||
+ | Отношения представляют тип взаимодействия между понятиями предметной области. Формально n-арные отношения определяются как подмно жество произведения n множеств . Пример бинарного отношения — отношение ЧАСТЬ-ЦЕЛОЕ. Отношения тоже могут быть организованы в таксономию по включению; например, отношения быть_отцом_для и быть_матерью_для на множестве людей содержатся в отношении быть_родителем_для, которое в свою очередь содержится в отношении быть_предком_для. | ||
+ | |||
+ | Функции — это специальный случай отношений, в которых n-й элемент отношения однозначно определяется n-1 предшествующими элементами. Формально функции определяются следующим образом: F: C1 × C2 × … × Cn-1 —> Cn. Примерами функциональных отношений являются отношения быть_матерью_для на множестве людей, или цена_подержанного_автомобиля, которая вычисляется в зависимости от модели автомобиля, даты изготовления и пробега. | ||
+ | |||
+ | Аксиомы используются, чтобы записать высказывания, которые всегда истинны. Они могут быть включены в онтологию для разных целей, например, для определения комплексных ограничений на значения атрибутов, аргументы отношений, для проверки корректности информации, описанной в онтологии, или для вывода новой информации. Аксиомы задают условия соотнесения категорий и отношений, они выражают очевидные утверждения, связывающие понятия и отношения. Под аксиомой можно понимать утверждение, вводимое в онтологию в готовом виде, из которого могут быть выведены другие утверждения. Они позволяют выразить ту информацию, которая не может быть отражена в онтологии посредством построения иерархии понятий и установки различных отношений между понятиями. В качестве примера аксиомы можно привести следующее высказывание: « Если X смертен, то X когда-нибудь умрет». Аксиомы позволяют в дальнейшем осуществлять умозаключения в рамках онтологии. Они могут снабжать исследователей информацией о правилах, позволяющих автоматически добавлять информацию. Аксиомы могут также представлять собой ограничения, накладываемые на какие-либо отношения, делающие возможным выведение умозаключений. Примером числовых ограничений является утверждение того, что для Человека количество биологических родителей равно 2. Количество и степень детализации аксиом обычно зависят от типа онтологии. | ||
+ | |||
+ | Экземпляры в литературе могут выступать также под названиями: | ||
+ | |||
+ | конкретные экземпляры; | ||
+ | инстанции; | ||
+ | индивидуальные экземпляры. | ||
+ | |||
+ | Экземпляры - это отдельные представители класса сущностей или явлений, то есть конкретные элементы какой-либо категории (например, экземпляром класса Человек будет королева Виктория). Составляющие онтологии подчиняются своеобразной иерархии. На нижнем уровне этой иерархической лестницы находятся экземпляры, конкретные индивиды , выше идут понятия, то есть категории. На уровень выше располагаются отношения между этими понятиями, а обобщающей и связующей является ступень правил или аксиом. [2] | ||
==источники информации== | ==источники информации== | ||
− | + | #И.С. Константинова, О.А. Митрофанова. ОНТОЛОГИИ КАК СИСТЕМЫ ХРАНЕНИЯ ЗНАНИЙ. Санкт-Петербургский государственный университет. Факультет филологии и искусств, Кафедра математической лингвистики | |
+ | #Онтологии и тезаурусы: модели, инструменты, приложения. Авторы: Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. Учебный курс | ||
+ | |||
+ | *http://it-claim.ru/wiki/index.php?n=CLAIM.%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0%D0%9E%D0%BD%D1%82%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D0%B8 | ||
*https://www.lektorium.tv/course/22781 | *https://www.lektorium.tv/course/22781 | ||
{{Онтологическая библиотека}} | {{Онтологическая библиотека}} |
Версия 23:40, 29 марта 2018
Список понятий см. в Глоссарий | |
Онтология - формальное представление знаний. Онтологии определяют понятия (концепции), относящиеся к какой-то области, а также задают отношения между этими терминами. Онтологии используются в таких областях информатики, как представление знаний, медицинская и биоинформатика, а также семантическая паутина (semantic web). Современные онтологии могут содержать десятки и сотни тысяч определений, поэтому они часто имеют формат, удобный для чтения компьютером, и имеют строгую логическую базу.
Структура онтологии
В общем виде структура онтологии представляет собой набор элементов четырех категорий:
классы (или понятия ) ; отношения (или свойства. атрибуты) ; функции ; аксиомы; экземпляры. [1]
Классы или понятия используются в широком смысле. Понятием может быть любая сущность, о которой может быть дана какая-либо информация. Классы — это абстрактные группы, коллекции или наборы объектов. Они могут включать в себя экземпляры, другие классы, либо же сочетания и того, и другого. Классы в онтологиях обычно организованы в таксономию — иерархическую классификацию понятий по отношению включения. Например, классы Мужчина и Женщина являются подклассами класса Человек, который в свою очередь включен в класс Млекопитающие.
Отношения представляют тип взаимодействия между понятиями предметной области. Формально n-арные отношения определяются как подмно жество произведения n множеств . Пример бинарного отношения — отношение ЧАСТЬ-ЦЕЛОЕ. Отношения тоже могут быть организованы в таксономию по включению; например, отношения быть_отцом_для и быть_матерью_для на множестве людей содержатся в отношении быть_родителем_для, которое в свою очередь содержится в отношении быть_предком_для.
Функции — это специальный случай отношений, в которых n-й элемент отношения однозначно определяется n-1 предшествующими элементами. Формально функции определяются следующим образом: F: C1 × C2 × … × Cn-1 —> Cn. Примерами функциональных отношений являются отношения быть_матерью_для на множестве людей, или цена_подержанного_автомобиля, которая вычисляется в зависимости от модели автомобиля, даты изготовления и пробега.
Аксиомы используются, чтобы записать высказывания, которые всегда истинны. Они могут быть включены в онтологию для разных целей, например, для определения комплексных ограничений на значения атрибутов, аргументы отношений, для проверки корректности информации, описанной в онтологии, или для вывода новой информации. Аксиомы задают условия соотнесения категорий и отношений, они выражают очевидные утверждения, связывающие понятия и отношения. Под аксиомой можно понимать утверждение, вводимое в онтологию в готовом виде, из которого могут быть выведены другие утверждения. Они позволяют выразить ту информацию, которая не может быть отражена в онтологии посредством построения иерархии понятий и установки различных отношений между понятиями. В качестве примера аксиомы можно привести следующее высказывание: « Если X смертен, то X когда-нибудь умрет». Аксиомы позволяют в дальнейшем осуществлять умозаключения в рамках онтологии. Они могут снабжать исследователей информацией о правилах, позволяющих автоматически добавлять информацию. Аксиомы могут также представлять собой ограничения, накладываемые на какие-либо отношения, делающие возможным выведение умозаключений. Примером числовых ограничений является утверждение того, что для Человека количество биологических родителей равно 2. Количество и степень детализации аксиом обычно зависят от типа онтологии.
Экземпляры в литературе могут выступать также под названиями:
конкретные экземпляры; инстанции; индивидуальные экземпляры.
Экземпляры - это отдельные представители класса сущностей или явлений, то есть конкретные элементы какой-либо категории (например, экземпляром класса Человек будет королева Виктория). Составляющие онтологии подчиняются своеобразной иерархии. На нижнем уровне этой иерархической лестницы находятся экземпляры, конкретные индивиды , выше идут понятия, то есть категории. На уровень выше располагаются отношения между этими понятиями, а обобщающей и связующей является ступень правил или аксиом. [2]
источники информации
- И.С. Константинова, О.А. Митрофанова. ОНТОЛОГИИ КАК СИСТЕМЫ ХРАНЕНИЯ ЗНАНИЙ. Санкт-Петербургский государственный университет. Факультет филологии и искусств, Кафедра математической лингвистики
- Онтологии и тезаурусы: модели, инструменты, приложения. Авторы: Б.В. Добров, В.В. Иванов, Н.В. Лукашевич, В.Д. Соловьев. Учебный курс
- http://it-claim.ru/wiki/index.php?n=CLAIM.%D0%A1%D1%82%D1%80%D1%83%D0%BA%D1%82%D1%83%D1%80%D0%B0%D0%9E%D0%BD%D1%82%D0%BE%D0%BB%D0%BE%D0%B3%D0%B8%D0%B8
- https://www.lektorium.tv/course/22781
|